

Video Pipeline

[image: version] [https://pypi.org/project/video-pipeline/] [image: license] [https://github.com/Nate-Wilkins/video-pipeline/blob/master/LICENSE] [image: status] [image: issues] [https://github.com/Nate-Wilkins/video-pipeline/issues]

Simplify the video streaming pipeline to provide frame by frame image
manipulation in near real-time.

Video streaming and image processing are really interesting!

This package aims to simplify the video streaming pipeline so users can
focus on more interesting parts of image processing. To learn more about
how this is accomplished and the details that make up the pipeline see
Architecture. To begin using using this package right away, see
Getting Started or Examples.

Table of Contents

	1. Getting Started

	2. Architecture

	3. Filters

	4. VideoProcessor

	5. VideoStream

	6. VideoTransport

	7. Performance

	8. RaspberryPi

	9. Examples

	10. video-pipeline

Indices and tables

	Index

	Module Index

	Search Page

1. Getting Started

The video-pipeline comes with a command line interface (CLI) that
you can utilize to preview, transport, and/or modify video streams!

	First you need to install the video-pipeline module from PyPI by
running:

pip install video-pipeline

	Once installed video-pipeline should be on your PATH.

	Make sure you have vlc [https://www.videolan.org/vlc/index.html] installed and on your PATH.

	Run the following command to start streaming video from your webcam:

video-pipeline start --source os --transport tcp-server transport-host=0.0.0.0 transport-port=8000

	On the same computer (or another computer on your LAN) run the
following command replacing HOSTNAME with the hostname of the
computer running video-pipeline.

Note: If you’re running on a linux machine you can run
hostname to get your HOSTNAME.

vlc "tcp/mjpeg://@HOSTNAME:8000/"

	You should now see a stream of your webcam!

To learn more about the video-pipeline command line interface run
video-pipeline --help. To see some more examples on how the CLI
could be used see the provided examples.

If you have any issues questions, comments, or concerns please feel free
to submit an issue to the issue tracker [https://github.com/Nate-Wilkins/video-pipeline/issues].

2. Architecture

video-pipeline consists of four high level components that describe how the
flow of video data progresses through the system.

	VideoStream - Stream video frames from a video source
and buffers the frames into memory.

	VideoProcessor - Processes image frames in parallel
with a specified FrameFilter.

	FrameFilter - Transforms one image frame of video at a time.
Used in the VideoProcessor.

	VideoTransport - Transport handler to stream content
to a destination (i.e. disk/network).

These components and this document should give you a high level understanding
of how video-pipeline works. Be aware that the core purpose of
video-pipeline is to make it easier to understand how video processing
works providing some deeper level of insight and not necessarily to be the
fastest most performant solution. In some situations video-pipeline is
even less performant than a custom solution. Depending on your requirements
it might be worth the effort to implement lower level packages or even
utilize C/C++ to reach higher performance benchmarks. To get a good
overview of the performance scenarios of video-pipeline see the
Performance section.

A lot of the inner workings and infrastructure in video-pipeline builds
off the hard work of these fantastic lower level packages and their
communities.

	imageio [https://imageio.github.io/]

	picamera [https://picamera.readthedocs.io/en/latest]

	scikit-image [https://peerj.com/articles/453/]

	numpy [https://www.numpy.org/]

These components are separated so that each component could potentially run
in parallel. “Potentially” because part of the scope of this project is to
benchmark the various configurations that could be used. And also to help
define clear boundaries between capturing, processing, and transporting
video data.

The architecture itself follows a producer/consumer model where-as the
VideoStream acts as the “Producer” and the rest of the components
in the pipeline (ie VideoProcessor, VideoTransport) act as
the “Consumer(s)”. Meaning that when an image frame is produced from
a VideoStream source the frame is passed along to the next component
in the pipeline. This was done to follow a more intuitive streaming
approach to keep the design as explicit as possible, while not making
it too cumbersome to reason with.

When the VideoStream “produces” an image frame it’s not really pushing
that new frame to the next part of the pipeline but rather the image frames
being captured are stored and then retrieved later by the pipeline itself.
This allows the VideoStream to run semi-independently from the rest of
the system and allows the pipeline to govern the speed in which it samples
image frames. Letting the sample rate help stabilize the pipeline and
mitigate backpressure issues.

After the pipeline samples image frames from the VideoStream the image
frames are then passed to the VideoProcessor. The VideoProcessor can
also accept a FrameFilter allowing the client to process/manipulate image
frames in real-time. To learn more about the other types of FrameFilters
see the Filters section. The VideoProcessor accepts each frame on the
same execution context as the the pipeline and does not process them right
away, instead the frames are queued up allowing for different modes of
processing. These processing modes determine which execution context
the image frame is processed in. The execution context is purposefully
vague to indicate that it doesn’t matter whether we’re using Threads
or Processes or the current execution context of the
pipeline - it’s up to the client!

Once the VideoProcessor is done processing an image frame, the processed
frame is appended to an output queue called the “frame buffer”. It is then the
responsibility of the pipeline to pick up the processed image frames and pass
them along to a VideoTransport. This transport component defines the basic
structure for handling a processed image frame and follows the same model.
This again allows the pipeline to drive the delivery of image frames based
on the needs of the other components in the pipeline. The primary types of
VideoTransports are TcpVideoTransport and FileVideoTransport.
The TcpVideoTransport allows image frames to be transferred to another
machine over a TCP Socket [https://en.wikipedia.org/wiki/Transmission_Control_Protocol] making it fairly
easy to stream video data directly to another host machine. The
FileVideoTransport on the other hand takes image frames and writes
them to disk. All VideoTransport types can be configured with
various settings defined by their respective classes.

The general flow of video data can be described more succinctly with this
diagram.

[image: DataFlow]

3. Filters

A filter, for video-pipeline intents and purposes, can be thought of as an
independent module that knows how to filter/manipulate/transform an image
frame. The transformation logic changes by implementation.

3.1. Built-In Filters

The built-in filters are mostly built off of
scikit-image [https://scikit-image.org/docs/stable/api/api.html]
and intentionally don’t do much processing to keep them simple to
provide a general idea of how one might go about building their own.

Available implementations:

	GrayScaleFameFilter - Converts image frame to a gray scale image frame.

	FindEdgesFrameFilter- Finds the edges in an image frame.
Currently Not Implemented in 0.0.1

3.2. Custom Filters

Currently Not Implemented in 0.0.1

To learn how to build your own custom filter see the
custom filter example.

4. VideoProcessor

Manages the processing of VideoStream’s buffered frames through
the use of FrameFilters to transform image frames in real-time.

Available implementations:

	ParallelVideoProcessor - follows a parallel processing model
to process image frames in parallel to make sure they are processed as
fast as possible.

	SerialVideoProcessor - doesn’t use any parallel processing
model to process image frames and is executed in the same execution context
as the pipeline.

4.1. ParallelVideoProcessor

This parallel processing model is achieved by spawning
a series of frame processors (denoted in the diagram below as F1,
F2, and F3) which utilize the FrameFilter that is provided
to the VideoProcessor to handle the filter logic of a single image
frame.

[image: VideoProcessor]
After an image frame has processed the image frame processor iterates
through the currently executing image frame processors to see if we
can buffer any processed image frames that might be ahead of us.
If a completed frame processor is found it’s processed image frame is
put into the frame buffer. We repeat this process until we run into
a frame processor that hasn’t been completed or we run out of frame
processors to check. The frame buffer is then later pulled by the
pipeline for transport.

4.2. SerialVideoProcessor

Nothing unique. Puts frames to process in a queue that is subsequently
processed by the pipeline’s execution context.

After an image frame has processed the pipeline takes the processed
image frame immediately.

5. VideoStream

Connects to a video source and transforms the source into a buffer queue of
frames. The video source changes by implementation.

Below you will find a diagram of a VideoStream implementation using a
VideoFrameCollector to collect image frames. This is pretty much how
every VideoStream operates.

[image: VideoStream]
Available implementations:

	FileVideoStream - WIP

	OsVideoStream - Streams a virtual device node created by the OS.

	PiVideoStream - Streams video from a RaspberryPi camera.

	YouTubeVideoStream - WIP

6. VideoTransport

The final destination of the pipeline. Transports processed image frames to
some destination specified by the client.

Available implementations:

	FileVideoTransport - WIP

	TcpVideoTransport - Transports image frames over a TCP socket.

	VisVisVideoTransport - Transports image frames to a visvis
preview window.

7. Performance

video-pipeline is a package designed to take advantage of the Python
multiprocessing library in order to speed up image manipulations and
filters applied to a PiCamera video stream in real time.

The intent of this approach is to spread the work of image manipulation
operations across many processes to “parallelize” the work that is done
on each frame. This concept holds under the assumption that the image
manipulation operations do not depend on the order in which the frame is
captured, so multiple frames can be processed in parallel and then
ordered chronologically later after completing the processing step.

Using video-pipeline to process many frames in parallel is
supposedly capable of processing more image frames than processing each
frame sequentially (capture->process->send out->repeat) although the
code architecture needed to support multiprocessing is much more
complex and likely introduces additional overhead to the pipeline versus
serial processing. The true performance gains of using
video-pipeline have not yet been quantified.

7.1. Testing approach

With this set of tests, I will quantify the performance of
video-pipeline versus serial image processing on a PiCamera video
stream. I will also quantify the operational overhead of the pipeline
itself compared to no image processing. The primary metric for
performance is frames per second (fps) of the video output.

Isolate image processing performance

I am interested only in the image processing part of
video-pipeline’s performance, so I will create a “control” script
that uses video-pipeline interfaces to PiCamera and outputting a
video stream to a client. The control script will NOT use
video-pipeline tools to handle images captured from PiCamera, but it
WILL use the same operations on each frame, processing each frame
directly and in order. In other words, the control script will be used
to quantify the performance of the test setup itself and establish a
baseline.

Quantify performance impacts from overhead

While the main benefit to using video-pipeline is its
multiprocessing support, it is possible to run video-pipeline with
one process. This effectively forces video-pipeline to operate on
frames in series. While this is not a realistic use-case of the package,
it provides us with an opportunity to quantify performance losses from
any additional overhead introduced from using this package versus plain
serial processing. Ideally, there would be little to no overhead and
using a single-process video-pipeline would have the same impact as
any other script between capturing and displaying frames.

Quantify gains from parallel processing

video-pipeline allows the user to select an arbitrary number of parallel
processes to use for image processing. Clearly the upper limit to the number of
concurrent parallel processes is limited by hardware capabilities, but we can
still assess the performance gains compared to a single-process baseline. Even
on hardware with one CPU core, the Python multiprocessing module abstracts
this away so we can specify an arbitrary number of processes. For these tests we
will compare the performance of video-pipeline with 1, 2, 4, 8, and 16
processes in the pool. The expectation is that performance improves with more
than one process but with diminishing returns as the number of processes
increases.

Try various image processing operations

The performance of an image processor is heavily dependent on the
operations it must perform on each frame. As an image processing task
has more operations or more complex computations to be run on every
pixel, it is expected to have lower throughput (fps). As such, I will
subject the serial baseline and video-pipeline to the following
operations: - No-op. Output frames exactly match the captured
frames. Any performance losses are attributed to overhead. - Grayscale
filter. Convert captured frames (RGB) to single-channel grayscale,
then output the grayscale frame as an equivalent 3-channel (RGB) frame.
The number of operations is proportional to the number of pixels in the
frame. This method is built in to PIL. - Sobel filter. Compute Sobel
edge detection algorithms on the captured frame and output the filtered,
grayscale result as an equivalent 3-channel (RGB) frame. The number of
operations is proportional to 8x the number of pixels in the frame since
it convolves a 3x3 kernel with every pixel. This method is built in to
PIL. - Color select filter. Convert captured frames (RGB) to HWV
color space. Create a binary mask of the pixels that are within the
desired HSV bounds. Apply the binary mask to the original frame as a
logical-and, then output the result as a 3-channel RGB frame. I don’t
know how many operations this is but it’s probably more than the Sobel
filter. These methods are built in to OpenCV.

7.2. Baseline Script

TODO@phil: write me
the source for the baseline serial, single process image processor will go here

7.3. Test Execution

TODO@phil explain the scene and how the test is conducted. use gifs
where applicable.

7.4. Test Results

TODO@phil: include plots showing diminishing returns from increasing
number of processes TODO@phil: include gif of sample video

Raspberry Pi 2

	640x480

	# processes

	No-op

	Grayscale

	Sobel

	Color Select

	Baseline

	1

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	1

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	2

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	4

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	8

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	16

	?? fps

	?? fps

	?? fps

	?? fps

Raspberry Pi 3 B+

	640x480

	# processes

	No-op

	Grayscale

	Sobel

	Color Select

	Baseline

	1

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	1

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	2

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	4

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	8

	?? fps

	?? fps

	?? fps

	?? fps

	video-pipeline

	16

	?? fps

	?? fps

	?? fps

	?? fps

8. RaspberryPi

Instructions to get video-pipeline setup on a RaspberryPi.

8.1. Dependencies

	python3.7

	pip

	Install Python3.7 dependencies

sudo apt-get update
sudo apt-get install -y libffi-dev libbz2-dev liblzma-dev \
 libsqlite3-dev libncurses5-dev libgdbm-dev zlib1g-dev \
 libreadline-dev libssl-dev tk-dev build-essential \
 libncursesw5-dev libc6-dev openssl git

Note\ : If you don't install these you will run into issues regarding pip
and/or the ssl module not being found.

	Download and extract source

wget https://www.python.org/ftp/python/3.7.2/Python-3.7.2.tgz
tar zxvf Python-3.7.2.tgz
cd Python-3.7.2
./configure --enable-optimizations --disable-tests

	Build and install Python 3.7

make -j 4 -l 4
sudo make install

	Upgrade pip

sudo python3.7 -m pip install --upgrade pip

	Install picamera.

sudo python3.7 -m pip install picamera

8.2. Installation

	Install video-pipeline

sudo python3.7 -m pip install video-pipeline

	Once installed you can use video-pipeline like you would on any other
machine. See Getting Started for more information.

8.3. External Resources

	https://github.crookster.org/Installing-Python-3.7-Raspberry-Pi-Raspbian-stretch/

	https://unix.stackexchange.com/questions/190794/uninstall-python-installed-by-compiling-source

9. Examples

In this document you’ll find some of the many ways you can utilize
video-pipeline’s infrastructure. This document assumes you’ve
gone through Getting Started.

9.1. Streaming with a Filter

Video streaming is relatively straight forward but sometimes I need to “filter”
(aka pre-process) my image before streaming it.

The following example utilizes the built-in gray-scale filter to apply to
every image frame in the hosted video stream.

	Run the following command to start streaming video from your webcam through a
gray-scale filter:

video-pipeline --host 0.0.0.0 --port 8000 --source os --filter gray-scale

	Use vlc to view the video stream. Replacing HOSTNAME with your hostname:

vlc "tcp/mjpeg://@HOSTNAME:8000/"

9.2. Custom Filters

While it’s nice to use the built-in filters of
video-pipeline sometimes you need the ability to customize the filter’s
image manipulation logic.

The following creates a always_coffee.py filter that will be applied to
every image frame in the hosted video stream.

	Create a python script called always_coffee.py with the following:

Note: The following uses scikit-image coffee [https://scikit-image.org/docs/stable/api/skimage.data.html#coffee]
.

from video_pipeline.frame_filter import FrameFilter
import skimage

class AlwaysCoffeeFrameFilter(FrameFilter):
 def process_frame(self, frame):
 return skimage.data.coffee()

	In the same directory run the following command to start streaming video from
your webcam through your custom filter by importing the script and specifying
the filter:

video-pipeline start --source os --filter always_coffee.py --transport tcp-server transport-host=0.0.0.0 transport-port=8000

	Use vlc to view the video stream. Replacing HOSTNAME with your hostname:

vlc "tcp/mjpeg://@HOSTNAME:8000/"

10. video-pipeline

Index

Video Pipeline

[image: version] [https://pypi.org/project/video-pipeline/] [image: license] [https://github.com/Nate-Wilkins/video-pipeline/blob/master/LICENSE] [image: status] [image: issues] [https://github.com/Nate-Wilkins/video-pipeline/issues]

Simplify the video streaming pipeline to provide frame by frame image
manipulation in near real-time.

Video streaming and image processing are really interesting!

This package aims to simplify the video streaming pipeline so users can
focus on more interesting parts of image processing. To learn more about
how this is accomplished and the details that make up the pipeline see
Architecture. To begin using using this package right away, see
Getting Started or Examples.

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Video Pipeline

 		
 Getting Started

 		
 Architecture

 		
 Filters

 		
 Built-In Filters

 		
 Custom Filters

 		
 VideoProcessor

 		
 ParallelVideoProcessor

 		
 SerialVideoProcessor

 		
 VideoStream

 		
 VideoTransport

 		
 Performance

 		
 Testing approach

 		
 Isolate image processing performance

 		
 Quantify performance impacts from overhead

 		
 Quantify gains from parallel processing

 		
 Try various image processing operations

 		
 Baseline Script

 		
 Test Execution

 		
 Test Results

 		
 Raspberry Pi 2

 		
 Raspberry Pi 3 B+

 		
 RaspberryPi

 		
 Dependencies

 		
 Installation

 		
 External Resources

 		
 Examples

 		
 Streaming with a Filter

 		
 Custom Filters

 		
 video-pipeline

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

